The industry portal MEDICA.de is the leading international information platform for bringing together producers, specialist dealers, researchers and users from the medical technology industry. The B2B portal is constantly updated and offers high-quality content every day in its five spheres of MEDICA that reflect the latest trends and developments in the medical world. Targeted search functions enable exhibitors and visitors to the trade fair and interested parties to quickly and easily find the information that is relevant to them and stay up to date. MEDICA.de also offers an extensive service area ranging from exhibitor database with product catalogues, online matchmaking to a hotel search. This way, visitors to the trade fair can plan their trip and make the most of their time on site.
In order to provide the MEDICA community with information throughout the year, we present our five spheres of MEDICA.
Discover thematically prepared news, background articles, interviews, statements, video reports or photo series from the healthcare industry and medical technology.
MED TECH & DEVICES
Reports, interviews, news and videos about imaging and diagnostics / medical equipment and devices.
A team of researchers at the University of Rochester has developed a new approach using ultrasound technology to promote the growth of blood vessels in damaged tissue. The method could have significant applications in reconstructive and plastic surgeries, as well as wound healing.
Researchers at the University of Utah have developed Diadem, a noninvasive ultrasound device that targets deep brain regions to potentially alleviate chronic pain. The device could offer a new therapeutic option for patients who do not respond to current treatments.
Researchers at the University of Colorado Boulder, in collaboration with the University of Pennsylvania, have developed an advanced 3D printing method to create materials that support human tissue effectively. This new approach could lead to significant improvements in personalized medical implants and tissue repair.
A new portable otoscope, developed by the Caruso Department of Otolaryngology at the University of Southern California, integrates optical coherence tomography (OCT) to provide high-resolution imaging of the tympanic membrane (TM) and middle ear (ME). This advancement offers clinicians a more comprehensive view of ear health, significantly improving diagnostic capabilities and patient outcomes.
As part of the international “PAINLESS” project, researchers at the University Medical Center Göttingen (UMG) have developed a non-invasive brain stimulation method for treating pain in cancer patients.
The newly founded Robotics Institute Germany (RIG) has started its work. The aim of the consortium, led by the Technical University of Munich (TUM) and the Karlsruhe Institute of Technology (KIT), is to establish Germany as the world's leading location for AI-based robotics. The project is being funded by the Federal Ministry of Education and Research with 20 million euros.
A recent study from the University of Gothenburg, published in The Lancet, highlights a significant improvement in heart transplant outcomes when donor hearts are preserved using hypothermic oxygenated machine perfusion, commonly known as "heart-in-a-box," compared to the traditional method of cold static storage.
Researchers at Rice University have created ultrasmall, stable gas-filled protein nanostructures that hold potential for significant advancements in ultrasound imaging and drug delivery.
A team at Kindai University Hospital's Department of Cardiovascular Surgery has achieved a significant advancement in treating the rare congenital heart defect known as Scimitar Syndrome. Led by Senior Professor Genichi Sakaguchi, the team successfully performed a modified version of the "Double-Decker Technique" on a two-year-old patient.
Autonomous robotic ultrasound systems can perform routine examinations and support doctors in the operating room. Prof. Nassir Navab from the Technical University of Munich (TUM) is researching these technologies and demonstrating their potential for everyday medical practice.
The FDA has approved a clinical trial to test the effectiveness of the PtNRGrid, a high-resolution brain recording device developed by engineers at the University of California San Diego. This device could significantly improve brain surgeries by providing detailed recordings of brain activity.
Care robot GARMI from the Technical University of Munich (TUM) is becoming increasingly versatile and intelligent. It combines various skills, supports people in their everyday lives and enables telemedical examinations.
Cervical cancer is the fourth most common malignant tumor disease in women worldwide. New research results from a comparative study lasting almost ten years show that total mesometrial resection (TMMR) practiced at Leipzig University Medicine has significant advantages over standard treatment.
Researchers at the Max Planck Institute for Biological Cybernetics have developed a new method for cost-efficient medical imaging. This method combines low-field magnetic resonance imaging (MRI) with hyperpolarization and artificial intelligence to improve image quality.
Hannover Medical School (MHH) is leading the RACOON-RESCUE project, which aims to open up new diagnostic possibilities for non-Hodgkin's lymphomas in children and adolescents with the help of automated image data analysis from CT and MRI. The project, led by Prof. Diane Renz, aims to determine disease stages more precisely and optimize therapy follow-up.
Researchers at the Medical University of Innsbruck have pioneered a shock wave therapy combined with bypass surgery, significantly improving the heart's pumping function by revitalizing dormant heart muscle cells. This therapy, which stimulates the growth of new blood vessels, is set to revolutionize the treatment of chronic heart muscle weakness.
The Technical University of Munich (TUM), in collaboration with an international consortium, has released the "Haptic Codecs for the Tactile Internet" (HCTI) standard after eight years of work. This standard enables the transmission of the sense of touch over the Internet, similar to JPEG for images or MP3 for audio.
The Karlsruhe Institute of Technology (KIT), in collaboration with Carl Zeiss Meditec AG and Evonik Healthcare, developed a method to restore eyesight by printing a new cornea during surgery using a laser-based process with personalized bioink. The "VisioPrinTech" process addresses corneal disorders, common among the aging population.
A new EU-funded project called ThrombUS+ aims to detect vein thrombosis at an early stage. Vein thrombosis poses a significant health risk, often occurring without symptoms and potentially leading to life-threatening pulmonary embolisms. The project is developing a portable solution that enables continuous monitoring and immediate detection.
MRI scans, a crucial diagnostic tool for conditions ranging from liver disease to brain tumors, require patients to remain completely still to avoid blurring the images. A new self-powered sensor could revolutionize this process by detecting patient movement in real time and stopping the MRI scan to prevent motion artifacts.
Dr. Melissa Grunlan, a professor in the Department of Biomedical Engineering at Texas A&M University, is developing synthetic plugs to treat chronic knee pain and disabilities, offering an alternative to total knee replacements. This project is funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases, a part of the National Institutes of Health.
At the forefront of cardiac care, the Department of Cardiology and Angiology at Hannover Medical School (MHH) has introduced a novel treatment method using self-dissolving stents.
A recent study conducted by the University of the Basque Country (UPV/EHU) and Biobizkaia sheds light on a potential breakthrough in Parkinson's disease research. The study suggests that analyzing retinal thickness could serve as a predictive tool for cognitive progression in Parkinson's patients, offering new avenues for monitoring neurodegeneration.
The new sensor from Fraunhofer IPM measures the oxygen content in the air we breathe precisely and quickly, which significantly improves patient monitoring.
Engineers at the University of California San Diego have developed a sweat-powered finger wrap that monitors vital health biomarkers such as glucose, lactate, vitamin C, and levodopa. This wearable device utilizes sweat from the wearer’s fingertip for both power and health monitoring, making it a convenient and non-invasive tool for personalized health tracking.
A research team from Bonn University Hospital, Cologne University of Applied Sciences and other partners is working on the VIRTOSHA project, which is developing a virtual reality training environment for surgical procedures.
A new study by the Paul Scherrer Institute (PSI) and the Massachusetts Institute of Technology (MIT) shows how artificial intelligence (AI) can improve the categorisation of breast cancer stages.
Researchers at the USC Viterbi School of Engineering have developed advanced ingestible sensors that utilize AI and wearable electronics to provide real-time 3D monitoring of gastrointestinal health. These innovative smart pills can detect stomach gases and track their location within the body, offering potential for early disease detection.
A research team has received approximately one million US dollars from the US National Institutes of Health (NIH) to develop an AI-based method for three-dimensional measurement of the choroid plexus in human brain scans. This project aims to enhance our understanding of these structures, which play a crucial role in brain and spinal cord function.
Engineers at the University of California San Diego have developed a soft, stretchy ultrasound patch for continuous, non-invasive monitoring of cerebral blood flow. This wearable technology offers three-dimensional data, advancing beyond the current clinical standard.
Researchers at McMaster University and the University of Waterloo have developed a pain-free, wearable patch that continuously monitors blood glucose, lactates, and other critical health indicators, sending results to a smartphone. This new wearable device could transform health monitoring and improve patient care.
A Czech-Bavarian research team is developing an artificial intelligence (AI) for gastroscopy to support doctors in the diagnostic process. The "GI-Insight" project is being led by Julius-Maximilians-Universität Würzburg and Charles University in Prague and aims to increase the precision and safety of gastroscopies.
Researchers at University of Galway and Heidelberg University have developed advanced digital baby models to enhance the understanding of infant metabolism and improve healthcare outcomes. These sex-specific, whole-body computational models simulate the metabolic processes of infants, paving the way for personalized medicine and better diagnosis and treatment of early-life medical conditions.
Inpatient care in Germany is facing major challenges. According to Statista, the number of people in need of care will increase by 50 percent by 2030, while the supply of nursing staff is expected to continue to decrease.
Penn State researchers have developed an adhesive sensing device that seamlessly attaches to human skin to detect and monitor health. The writable sensors can be removed with tape, allowing new sensors to be patterned onto the device.
Glaucoma remains a major cause of vision loss, affecting millions worldwide. Traditionally, diagnosing this condition early has been challenging due to the subtle changes in eye pressure that are hard to detect continuously. Researchers have now developed a 'smart' contact lens that could change how we monitor and detect this disease.
Researchers from Heriot-Watt University and the University of Birmingham, along with colleagues from the University of Edinburgh, have introduced an ingestible capsule equipped with sensors to monitor gut movement, potentially improving gastrointestinal diagnostics and treatment.
Singaporean researchers, led by Nanyang Technological University, Singapore (NTU Singapore), have introduced a mobile application named WellFeet, designed to educate individuals living with diabetes and their caregivers about the disease and assist them in monitoring daily activities, including medication, physical activity, and diet.
Researchers from the University Hospital Bonn, the University of Bonn, the Sankara Eye Foundation India, and Microsoft Research India are collaborating to improve cataract surgery outcomes in developing regions. Employing artificial intelligence (AI) for video analysis, their initiative aims to address challenges faced in the Global South.
Researchers at the University Hospital Bonn, in collaboration with the University of Bonn, have developed a computer method to determine whether protein excretion in urine is caused by a few severely damaged or many slightly damaged kidney filters. The innovative findings were published in the journal Kidney International.
A new non-invasive glucose monitoring optical sensor, poised to transform diabetes management by providing pain-free glucose level measurements, has been developed by researchers at RMIT University.
In a study by Linköping University, an AI-based mobile app has shown high precision in diagnosing skin melanoma, offering new hope for early detection. This research marks a significant step forward in utilizing artificial intelligence (AI) for health diagnostics in primary care settings.
A new medical device developed by researchers at Northwestern University might soon offer individuals with bladder dysfunctions a way to monitor their condition in real time, thanks to a groundbreaking implant and accompanying smartphone app.
UCLA bioengineers have introduced an AI-assisted wearable device, a significant stride in speech technology for individuals with voice disorders. This adhesive neck patch could change how people with pathological vocal cord conditions or post-laryngeal cancer surgeries communicate, offering a new beacon of hope for those who find speaking a challenge.
In recent years, advancements in medical textiles and sensor technologies have brought about improvements in skin protection within the healthcare sector. From pressure-equalizing mattresses designed for newborns to intelligent sensor systems aimed at preventing pressure injuries in adults, these inventions have the potential to improve patient care and enhance overall well-being.
Portuguese researchers from the Institute for Systems and Computer Engineering, Technology and Science (INESC TEC) and the IMP Diagnostics Molecular & Anatomic Pathology laboratory have unveiled the world's first prototype applying Artificial Intelligence (AI) to colorectal diagnosis.
The Amsterdam University Medical Center announces the implementation of the HartWacht (HeartGuard) app to enhance patient care at its Heart Centre. Developed by the Cardiology Centers Netherlands (CCN), this e-health tool enables remote monitoring of blood pressure and arrhythmias, empowering patients to manage their conditions from home effectively.
Advancements in drug delivery technology are paving the way for innovative treatment methods for chronic diseases. A recent breakthrough at the University of North Carolina at Chapel Hill introduces the Spatiotemporal On-Demand Patch (SOP), a wireless drug delivery system that could revolutionize the treatment of neurodegenerative disorders and neurological injuries.
In a significant technological breakthrough, a research team from KAIST (Korea Advanced Institute of Science and Technology) has unveiled a groundbreaking electromyography (EMG) sensor that promises to revolutionize the field of wearable robots.
Rice University bioengineers have harnessed the lotus leaf's unique properties to create a cutting-edge platform for culturing cancer cell clusters. This system offers a new approach to studying tumor progression and metastasis, providing essential insights into cancer biology and treatment.
A new AI-based digital platform, developed by a research team at the University Hospital of Cologne, enables rapid and precise analysis of lung cancer tissue sections. The platform, which is based on advanced algorithms, could significantly improve the quality of diagnostics and provide new insights into the treatment of lung cancer.
Researchers at the University of Cambridge have developed lab-grown "mini-guts" to better understand and treat Crohn’s disease, a chronic inflammatory bowel disease affecting millions worldwide. These mini-guts, or organoids, mimic the gut lining's key functions and could pave the way for more personalized and effective treatments.
Researchers at the Research Center Borstel, Leibniz Lung Center, have discovered a biomarker that can predict the risk of nerve disease during tuberculosis therapy.
Researchers at the University of Bonn and the University Hospital Bonn have developed a cost-effective and efficient method to generate functional endothelial cells from human induced pluripotent stem cells (hiPSCs).
A recent study led by researchers at the Medical University of Vienna has identified the AF1Q gene as a significant biomarker for predicting the risk of gastric cancer relapse. This discovery could enhance personalized treatment strategies and improve survival rates for patients. The study was published in Scientific Reports.
Researchers at the University of Edinburgh have developed 3D-printed blood vessels that mimic the properties of human veins. These artificial vessels could significantly improve the outcomes of heart bypass surgeries by reducing complications such as scarring, pain, and infection.
A team of engineers and scientists at the University of Notre Dame has developed a wireless LED device that can be implanted to treat deep-seated cancers. This device, when combined with a light-sensitive dye, not only destroys cancer cells but also activates the immune system to target the cancer. The research findings were published in Photodiagnosis and Photodynamic Therapy.
In a new study, the University of Bayreuth has investigated the sensitivity of bacterial systems for controlling gene activity to red light. These research results open up a wide range of possibilities for the biotechnological application of bacteria. The results of the study have been published in Nature Communications.
The diagnosis of tuberculosis (TB) in children poses a particular challenge. While adults can often be diagnosed by detecting genetic material in their sputum, this is often not possible in children as they rarely produce sputum.
A team at the University Hospital Bonn (UKB) has established a modern method for the cryopreservation of ovarian tissue known as vitrification. This technique is used to preserve fertility before cancer therapies.
A research team from Hannover Medical School (MHH) has developed a new molecular tool to investigate the influence of telomerase on the development of heart muscle cells. This study could have significant implications for the treatment and prevention of heart diseases.
Chimeric Antigen Receptor T (CAR T) cells are a breakthrough in immunotherapy, offering hope for blood cancer patients who have exhausted other options. These genetically modified cells are designed to attack cancer cells by recognizing specific antigens. The therapy has shown promise, particularly in treating B-cell leukemias and lymphomas.
The Carl von Ossietzky University of Oldenburg has published a study in which an international research team reports on the discovery of a potential biomarker from the human intestine. This plasmid could be used in the future to detect fecal contamination or monitor inflammatory bowel diseases. The results were published in the journal Cell.
Researchers led by Rumiana Dimova at the Max Planck Institute for Colloids and Interfaces have developed a technique that uses light to understand and control the inner dynamics of cells. By employing lights of different colors, they can alter the interactions within cellular components, offering a precise and non-invasive method to administer drugs directly into the cells.
Research from Monash and Osaka Universities highlights the key role sensory neurons play in tissue repair and regeneration, marking a significant advancement for regenerative medicine.
A team of engineers, led by the University of Massachusetts Amherst, has developed a cutting-edge bioelectronic mesh system integrated with graphene sensors to monitor both mechanical movement and electrical signals in lab-grown human cardiac tissue.
New developments at the Fraunhofer Institute for Material and Beam Technology IWS and partners enable improved research possibilities for cancer therapy using microphysiological systems.
A new medical technique utilizing magnet-guided microrobots for treating liver tumors has been developed by a Canadian research team, offering a potential new approach in oncology.
At the University Hospital Wuerzburg, a promising new treatment for knee joint defects involves the use of nasal cartilage, and it's edging closer to approval with significant EU funding. The new method is using autologous cartilage from the nasal septum, an approach that may seem as enchanting as the term "ENCANTO" implies.
With over seven million individuals in Germany affected by diabetes, science still faces challenges in drug research. However, under the leadership of Prof. Peter Loskill from both the NMI and the University of Tübingen, scientists have devised a method that markedly enhances our understanding at the molecular and cellular levels within the pancreas.
The Fraunhofer Institutes for Laser Technology ILT and for Production Technology IPT developed a new AI-assisted high-throughput process that enhances cell isolation. This presents vast implications for personalized medicine, drug development, and clinical research.
Detecting diseases early or predicting their onset is crucial for healthcare. Dr. Larysa Baraban's team at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) develops miniaturized biosensor devices using nanomaterials.
Over 100 million people globally suffer from strokes annually, with ischemic strokes being the most common. However, many strokes go undetected, leading to severe consequences like dementia or depression. Prof. Olga Golubnitschaja from the University Hospital Bonn (UKB) has spearheaded a comprehensive approach to assess stroke risk early, focusing on predictive medicine.
Unlike conventional blood cultures, which can take anywhere from 15 hours to several days to yield results, the new digital DNA melting analysis delivers actionable insights in under six hours. This accelerated turnaround time enables clinicians to initiate targeted treatment strategies promptly, minimizing the risk of disease progression and improving patient outcomes.
Soft rehabilitation gloves have become essential tools in helping patients with hand function-related disabilities regain finger movement. Traditionally, these gloves use soft pneumatic actuators driven by air pressure to facilitate motion. However, most current soft actuators primarily assist in finger bending (flexion) but struggle with enabling finger straightening (extension).
Discovering new methods to enhance the recovery process for ventilated intensive care unit (ICU) patients is crucial in improving their overall outcomes. A recent study conducted in Tokyo, Japan, sheds light on the efficacy of early mobilization, supported by mobile patient lifts, in facilitating patient recovery.
A better understanding of muscle activity patterns in the forearm supports a more intuitive and natural control of artificial limbs. This requires a network of 128 sensors and artificial intelligence based techniques.
The GyroTrainer is an intelligent training device that resembles a balance board. It uses artificial intelligence to adjust the difficulty level to the individual patient’s current ability.
A groundbreaking, easy-to-use 3D printable finger prosthesis created by a recent University of Houston graduate could offer amputees a low-cost solution to restore finger functionality.
A new study carried out at the Faculty of Sport and Health Sciences at the University of Jyväskylä, Finland, found that an individually tailored exercise program improves motor function, muscle strength and joint mobility in children and young adults with CP.
TU Dresden researchers have analyzed the mechanics of office chairs and developed a sensor that, in combination with a dedicated software, can in the future help employees move more and more consciously during office work.
The joint study by Rytis Maskeliūnas, a researcher at Kaunas University of Technology, Faculty of Informatics (KTU IF), and Lithuanian researchers is focused on creating an artificial intelligence (AI)-based system that aims to facilitate the rehabilitation process.
For the first time, a person with an arm amputation can manipulate each finger of a bionic hand as if it was his own. Thanks to revolutionary surgical and engineering advancements that seamlessly merge humans with machines, this breakthrough offers new hope and possibilities for people with amputations worldwide.
An intelligent suit is hoped to significantly improve rehabilitation after a serious spinal cord injury. The AI-supported solution will be developed over the next three years by researchers from Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) working in collaboration with Heidelberg University and Heidelberg University Hospital.
Designed for independent use in community settings, the new exosuit could help stroke survivors improve their gait outside of the lab and during their daily routines.
A decline in functional mobility, loss of muscle strength and an increase in body fats are often associated with ageing. This trend could potentially be reversed by way of an innovative magnetic muscle therapy pioneered by researchers from the National University of Singapore (NUS).
A low-cost robotic arm created by students as an alternative to conventional prostheses: The ARM2u biomedical engineering team, from the UPC’s Barcelona School of Industrial Engineering (ETSEIB), is working on new functions for their low-cost 3D-printed transradial prosthesis.
After a stroke, physical activity can be pivotal to successful recovery. People who spend four hours a week exercising after their stroke achieve better functional recovery within six months than those who do not, a University of Gothenburg study shows.
Through ReWIRE, next-generation scientists will be trained to develop translational breakthrough therapeutic solutions for patients with paralysis caused by traumatic spinal cord injuries.
Researchers at ETH Zurich, Empa and EPFL are developing a 3D-printed insole with integrated sensors that allows the pressure of the sole to be measured in the shoe and thus during any activity.
In a study recently published in Gait & Posture, researchers from the University of Tsukuba have revealed that the volume of the hippocampus is correlated with a measure of balance ability in healthy older people.
In a study recently published in BMC Geriatrics, researchers from the University of Tsukuba have revealed a new measure of physical balance that could help to identify individuals who are at risk of developing Alzheimer's disease (AD).
Mechanical vibrations could help improve our muscles and our balance control, according to research at Aston University. Researchers in the College of Engineering and Physical Sciences have examined the effect of stimulation on muscle spindles which ‘speak’ to the central nervous system to help keep us upright and walk straight.
Imperial researchers have developed a low-cost, easy-to-manufacture stabiliser for broken bones to help in regions where such devices are expensive or in short supply and people sometimes resort to homemade options.
Osaka Metropolitan University scientists have revealed that knee extension velocity while seated is a stronger predictor of walking performance than muscle strength in elderly patients after their total knee arthroplasty (TKA) surgery.
A team at FAU is investigating how intelligent prostheses can be improved. The idea is that interactive artificial intelligence will help the prostheses to recognize human intent better, to register their surroundings and to continue to develop and improve over time.
The GribAble device, created by researchers at Imperial College London and clinicians at Imperial College Healthcare NHS Trust, consists of a lightweight electronic handgrip that interacts wirelessly with a standard PC tablet to enable the user to play arm-training games.
Researchers from North Carolina State University and Columbia University have developed a cost-effective bandage that uses an electric field to accelerate the healing of chronic wounds. In animal tests, this electric bandage improved wound healing by 30 percent compared to conventional bandages.
A team of researchers from the Keck School of Medicine of USC and the California Institute of Technology (Caltech) is developing advanced electronic bandages and other tools to improve the monitoring and healing of chronic wounds. These wearable bioelectronic systems, tested in animal models, have the potential to enhance wound care through controlled drug release and electrical stimulation.
The University of Granada (UGR) has pioneered a solution for burn treatment with its artificial skin “UGRSKIN”. Developed by the Tissue Engineering Research Group, this advanced therapy medicinal product (ATMP) has improved the approach to treating severe burns, offering patients new hope and enhanced outcomes.
Researchers at the University of Jyväskylä in Finland are pioneering the development of antiviral surfaces to mitigate the spread of infectious diseases, particularly focusing on coronaviruses.
Empa researchers have pioneered a novel soldering process that employs nanoparticles and lasers to gently fuse tissue, ushering in a new era in wound closure.
A research team headed by Professor Julia Bandow and Dr. Tim Dirks from the Chair for Applied Microbiology at Ruhr University Bochum, Germany, showed that bacteria that overproduce the heat shock protein Hsp33 can withstand plasma treatment more effectively than others.
There is a low-cost way for you to protect yourself and reduce your risk of respiratory diseases such as flu, RSV, and COVID-19. Build yourself a Corsi-Rosenthal box (CR box) in 30 minutes with just $60 worth of common hardware store supplies.
The team of Prof. Dr. Thomas Scheibel, Chair of Biomaterials at the University of Bayreuth, has compiled a current overview of the state of research on protein-based bioadhesives.
Dr. Jasmina Gačanin, postdoctoral researcher at the Max Planck Institute for Polymer Research in the department of Prof. Dr. Tanja Weil, has been appointed as a “Peretti-Schmucker Fellow”.
Many hospitals use the adsorber CytoSorb to purify the blood of seriously ill patients in order to trap inflammatory substances and prevent the life-threatening cytokine storm. MHH researchers have now found in a meta-study that the treatment does not reduce mortality and may even cause harm.
Researchers develop and test highly efficient, environmentally friendly and stable antimicrobial (antibacterial, antiviral, antifungal) coating technologies in the NOVA project.
Researchers from Empa and ETH Zurich have developed a plaster with a sensor function to ensure that wounds in the abdomen remain tightly closed after an operation.
Using a newly developed method for the efficient and cost-effective production of biocompatible microfibres, the production of autologous skin and organs can be significantly accelerated. Responsible for the development are Carole Planchette and her team from TU Graz.
A study conducted by the Department of Molecular and Medical Virology at Ruhr University Bochum, Germany, has shown that temperature is a major factor in this process: at room temperature, a monkeypox virus that is capable of replicating can survive on a stainless steel surface for up to eleven days, and at four degrees Celsius for up to a month.
Materials made of spider silk can be specifically modified or processed in such a way that living cells of a certain type adhere to them, grow and proliferate. This has been discovered by researchers at the University of Bayreuth under the direction of Prof. Dr. Thomas Scheibel.
A nanocellulose wound dressing that can reveal early signs of infection without interfering with the healing process has been developed by researchers at Linköping University, Sweden.
Most of the time, when someone gets a cut, scrape, burn, or other wound, the body takes care of itself and heals on its own. But this is not always the case. Diabetes can interfere with the healing process and create wounds that will not go away and that could become infected and fester.
Researchers from the University of Tsukuba showed the association between the concentration of evaporated alcohol from alcohol-based disinfectants used for incubators and the amount of alcohol absorbed by premature infants.
The boundaries between biology and technology are becoming blurred. Researchers at Linköping, Lund, and Gothenburg universities in Sweden have successfully grown electrodes in living tissue using the body’s molecules as triggers. The result, published in the journal Science, paves the way for the formation of fully integrated electronic circuits in living organisms.
Georgia Institute of Technology researchers have found a way to use small shocks of electricity to disinfect water, reducing energy consumption, cost, and environmental impact.
Fraunhofer researchers have succeeded in using the bioresorbable silica gel Renacer to produce an electrospun membrane that is neither cytotoxic to cells nor genotoxic.
Recently, a Korean joint research team from POSTECH-KKU has developed a new tissue adhesive that restores the damaged cornea by simply filling it and exposing it to light.
A new junior research group at Freie Universität Berlin, which will investigate the production of biodegradable antiviral and antibacterial materials, with one of the goals of synthesis being new alternatives to conventional antibiotics, will receive a total budget of more than 1.8 million euros from the German Federal Ministry of Education and Research (BMBF) over the next five years.
MEDICA 2023 has fulfilled the highest expectations. As one of the largest medical B2B trade fairs, MEDICA will once again be your global highlight from 11 - 14.11.2024: for pioneering innovations and developments as well as visionary impulses. Industry and research from all over the world will present you with future perspectives and solutions. Become part of the leading trade fair for the medical technology industry.