04/10/2024
A team of researchers from the University of Freiburg and the INM - Leibniz Institute for New Materials has developed a bio-based test procedure that can diagnose complex diseases simply and cheaply. These “OptoAssays” use light control to move biomolecules and read out results without mechanical support - with potential applications in on-site diagnostics.27/09/2024
A research team from Heidelberg University and the Max Planck Institute for Medical Research has developed a new method of molecular engineering. This makes it possible to precisely control organoids and improve their complexity. With the help of DNA microspheres, growth factors can be released in a targeted manner to recreate tissue structures more realistically.20/08/2024
As the medical field seeks more ethical and accurate alternatives to traditional drug testing, vessel-chip technology is a prospective solution. This technology promises greater accuracy and a reduced need for animal trials.23/07/2024
To improve local medical care through point-of-care tests (PoCT), 80 partners from industry and research in Saxony and Thuringia have joined forces to form the DIANA (Diagnostics and Sustainability) alliance. Dr. Dirk Kuhlmeier coordinates the alliance.22/04/2024
New developments at the Fraunhofer Institute for Material and Beam Technology IWS and partners enable improved research possibilities for cancer therapy using microphysiological systems.16/04/2024
World Laboratory Day takes place annually on April 23. It is intended to draw attention to the work in laboratories and the achievements of laboratory employees. MEDICA-tradefair.com takes the day as an opportunity to highlight current trends that continue to shape these work environments. These trends will also be a main focus of the MEDICA LABMED FORUM at MEDICA 2024.26/03/2024
With over seven million individuals in Germany affected by diabetes, science still faces challenges in drug research. However, under the leadership of Prof. Peter Loskill from both the NMI and the University of Tübingen, scientists have devised a method that markedly enhances our understanding at the molecular and cellular levels within the pancreas.05/03/2024
Unlike conventional blood cultures, which can take anywhere from 15 hours to several days to yield results, the new digital DNA melting analysis delivers actionable insights in under six hours. This accelerated turnaround time enables clinicians to initiate targeted treatment strategies promptly, minimizing the risk of disease progression and improving patient outcomes.01/11/2023
Physicist and veterinarian Prof. Dr. Kristian Franze, Director at the Max-Planck-Zentrum für Physik und Medizin (MPZPM) and Director of the Institute for Medical Physics and Microtissue Engineering at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), has been awarded an ERC Synergy Grant.25/10/2023
A researcher team from Ecole Polytechnique Federal de Lausanne led by Dr. Vivek Thacker now group leader at the Department of Infectious Diseases at Heidelberg University Hospital have studied why tuberculosis bacteria form long strands and how this affects their infectivity.09/10/2023
Addressing the impact of female menopause on dynamic resilience and exploring preventive and therapeutic strategies is the aim of an international and interdisciplinary research group led by Prof. Dr. Peter Loskill from the NMI Natural and Medical Sciences Institute and the Eberhard Karls University of Tübingen.21/09/2023
Technology, developed by researchers from the Knoblich group at the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences and the Treutlein group at ETH Zurich, permits the identification of vulnerable cell types and gene regulatory networks that underlie autism spectrum disorders.18/09/2023
A group of researchers at the Technical University of Munich (TUM) has developed the world’s first microrobot (“microbot”) capable of navigating within groups of cells and stimulating individual cells.15/09/2023
The European Research Council (ERC) has announced the recipients of its prestigious Starting Grants. Among them is a researcher from the Technical University of Braunschweig: Dr. Thomas Winkler will receive €1.5 million for his research on modular organ-on-chip technology to better understand neuropsychiatric disorders such as schizophrenia.06/09/2023
Linnaeus University is partnering with industry and healthcare to develop advanced biosensors, investing SEK 35 million in a project aimed at faster and cost-effective diagnoses of aggressive lung cancer, viral, and bacterial diseases, potentially enabling self-testing at home.30/06/2023
Using microfluidics, flow cytometry and electrical impedance, Sarah Du recently received a patent from the United States Patent and Trademark Office for a novel invention that will offer patients a better way to manage their disease.21/06/2023
Two new assistant professors at the University of Bonn are setting out to develop “mini-organs” in order to study metabolic and disease mechanisms.06/06/2023
"Get the right result, every time": the start-up Panadea Diagnostics has set this as the goal of its work. Operating since April 2023, the biotechnology company founded by researchers at Hamburg's Bernhard Nocht Institute for Tropical Medicine (BNITM) develops special technologies for antibody detection of tropical and emerging infectious diseases.19/05/2023
Wavy wounds heal faster than straight wounds because shapes influence cell movements, a team of researchers at Nanyang Technological University, Singapore (NTU Singapore) has found.11/05/2023
An international research team, comprising scientists from University Hospital Bonn, DZNE, the Netherlands, and the US has been awarded a US$ 1.3 million grant by the “Human Frontier Science Program” to investigate brain immune cells and manipulate them via light irradiation.09/05/2023
Researchers have designed a new stem cell model to study congenital diaphragmatic hernia in newborns with underdeveloped lungs. They were able to isolate stem cells from the fluid that is suctioned from the baby’s lungs and normally gets discarded and use them as a foundation for the model.20/04/2023
Novel microelectrode array system enables long-term cultivation and electrophysiological analyses of brain organoids.19/04/2023
In the process of organoid manufacturing, bioprinting technology not only facilitates the creation and maintenance of complex biological 3D shapes and structures, but also allows for standardization and quality control during production.12/04/2023
In a joint project of the Max Planck Institute for Polymer Research, Mainz, and the Translational Center for Regenerative Therapies at the Fraunhofer Institute for Silicate Research ISC, Würzburg, scientific principles and biomaterials for the standardized production of valid tissue models are to be developed.06/04/2023
A team of experts has designed a microfluidic device called microfluidic dynamic BH3 profiling (μDBP) that predicts the effectiveness of cancer treatment quickly and automatically.04/04/2023
Infection and immunity status of the population are considered key parameters for handling pandemics. For this purpose, detecting antigens and antibodies is of great importance. The devices currently used for this purpose - what are known as point-of-care (POC) devices- are one option for rapid screening. Their sensitivity, however, needs further improvement.27/03/2023
Rice University researchers developed an upgraded tumor model that houses osteosarcoma cells beside immune cells known as macrophages inside a three-dimensional structure engineered to mimic bone. Using the model, bioengineer Antonios Mikos and collaborators found that the body’s immune response can make tumor cells more resistant to chemotherapy.03/03/2023
A research group at Uppsala University has developed a simple and effective artificial blood-brain barrier model that can be used to determine how well antibody-based therapies can enter the brain.02/03/2023
The boundaries between biology and technology are becoming blurred. Researchers at Linköping, Lund, and Gothenburg universities in Sweden have successfully grown electrodes in living tissue using the body’s molecules as triggers. The result, published in the journal Science, paves the way for the formation of fully integrated electronic circuits in living organisms.06/02/2023
With this microfluidic device, researchers modeled how sickled blood cells clog the spleen’s filters, leading to a potentially life-threatening condition.15/11/2022
Several Fraunhofer institutes present their latest technology in the field of medical technology and health at MEDICA 2022. Automation processes, polymers and digital networking are just some of the topics to be found at the stand. We talked to some of the institutes during our highlight tour.08/07/2022
Ex vivo studies of human obesity without animal testing? The Adipose-on-Chip system offers a solution that allows scientists to gain better insights into various obesity-linked secondary diseases and comorbidities in the future.15/05/2019
New active substances that are suitable for drugs are initially tested in animal experiments. However, the results cannot always be transferred to the human organism. At the Karlsruhe Institute of Technology, Prof. Ute Schepers from vasQlab explains how active substances can be tested in human tissue without endangering human health.01/02/2019
In vitro processes and animal tests are used to develop new medications and novel therapeutic approaches. However, animal testing raises important ethical concerns. Organ-on-a-chip models promise to be a feasible alternative. In a system the size of a smartphone, organs are connected using artificial circulation.01/02/2019
Organ-on-a-chip systems are technically a great enhancement of medical research because they facilitate testing of active ingredients on cell cultures in the chambers of a plastic chip. This replaces animal testing and improves patient safety. That being said, they are not a true-to-life replication of the human body and can only simulate a few functions and activities.