Tiwari, Viswanath and several collaborators were recently awarded a $1.15 million grant from the National Cancer Institute (NCI)'s Informatics Technology in Cancer Research (ITCR) program to pursue development and dissemination of the AI-informed tools.
The potential benefit for doctors and their patients: Fewer unnecessary surgeries to remove suspect tissue which now can only be confirmed to be non-cancerous after initial therapy. Doctors often end up performing those surgeries for one simple reason: Tissue that has been scarred and damaged - even killed - by chemotherapy or radiation resembles a recurring tumor on an MRI scan, the researchers said.
"They look very similar on the image, at least from what the human eye can perceive," said Viswanath, who specializes in colorectal cancers, while Tiwari focuses on brain cancers. For a colorectal cancer patient, that can often mean getting a proctectomy (a portion of the rectum removed), a radical procedure that significantly reduces quality of life, Viswanath said.
"So, until now, if you do not take the lesion out, you cannot tell if it is a tumor," Tiwari said. "But you really do not want to keep hitting cancer patients with unnecessary surgeries - and that is especially true in both brain and colorectal cancers."
Their proposed tool would harness the interpretive power of the center's deep-learning computers, which will use the AI tools being designed and developed in this project to tease out miniscule variations between the tumors and damaged tissue on MRI scans. Those previously unseen variations differentiate tumors from dead tissue (known as necrosis, when most or even all of the cells in the tissue have died) or severely damaged scar tissue (known as fibrosis).
The research covers brain and colorectal cancer because they are similar in "terms of over-treatment," Viswanath said, referring to decisions by some surgeons to not risk a second surgery when it is actually necessary, or the earlier example of an unnecessary surgery.
The NCI grant also calls for the researchers to begin making the tool available to other scientists, with an eye on future dissemination among clinicians.
"Dissemination of this information is a key to this grant," Tiwari said. "The research community is starting to appreciate the importance of radiomics, and there is a lot of excitement. Hopefully, the next step is to really get this into the clinical community as well."
MEDICA-tradefair.com; Source: Case Western Reserve University