News from the Editors -- MEDICA - World Forum for Medicine

MEDICA Newsletter

Social Media

Image: graphic for heart cell observation; Copyright: Daria Sokol/MIPT Press Office

Gentle technique to study heart tissue functioning

03/07/2020

Biophysicists from the Moscow Institute of Physics and Technology and their colleagues have proposed a simple way to observe the heart tissue. Besides being relatively uncomplicated, the new method is cheaper and produces results that are more independent, compared with the analogues currently in use. The study came out in Annals of Biomedical Engineering.
Read more
Image: 3D lattice structure of a tissue implanted directly onto a soft living tissue; Copyright: Ohio State University

Directly printing 3D tissues within the body

18/06/2020

In the TV series Westworld, human body parts are built on robotic frames using 3D printers. While still far from this scenario, 3D printers are being increasingly used in medicine. For example, 3D printing can be used to produce parts of the body such as orthopedic joints and prosthetics, as well as portions of bone, skin and blood vessels.
Read more
Graphic: Low-oxygen cell culture conditions combined with human heart organoids recreate tissue-level features of a post-heart attack heart; Copyright: Dr. Dylan Richards

Tissue Engineering: heart attack in a dish

16/06/2020

A team of investigators at the Medical University of South Carolina (MUSC) and Clemson University recently reported in an article in Nature Biomedical Engineering that they have developed human cardiac organoids less than 1 millimeter in diameter that closely resemble the physiological conditions that occur during a heart attack.
Read more
Image: 3D-printed tissue; Copyright: University of Colorado Denver

3D-printable material that mimics biological tissues

12/06/2020

Biological tissues have evolved over millennia to be perfectly optimized for their specific functions. Take cartilage as an example. It's a compliant, elastic tissue that's soft enough to cushion joints, but strong enough to resist compression and withstand the substantial load bearing of our bodies: key for running, jumping, and our daily wear and tear.
Read more
Image: Microneedles attached to a strip of tape; Copyright: Khademhosseini Lab

Delivering stem cells for localized MSC therapy

10/06/2020

Mesenchymal stem cells (MSCs) are multipotent in that they naturally replenish the cell types that build our bone, cartilage and adipose tissues. However, their much broader regenerative potential, based on their capacity to migrate and engraft in injured tissues, makes them exquisite candidates for cell-based therapies for diseases.
Read more
Image: 7 weeks old human embryo surrounded by placenta; Copyright: Hill, M.A. (2020, May 18)

Unique insight into development of human brain

28/05/2020

Stem cell researchers at Lund University in Sweden have developed a new research model of the early embryonic brain. The aim of the model is to study the very earliest stages of brain to understand how different regions in the brain are formed during embryonic development.
Read more
Image: feet bones; Copyright: Texas A&M University College of Engineering

Bioprinting: 3D-functional bone tissues

20/05/2020

Dr. Akhilesh K. Gaharwar, associate professor, has developed a highly printable bioink as a platform to generate anatomical-scale functional tissues. This study was recently published in the American Chemical Society's Applied Materials and Interfaces.
Read more
Image: system for integrating artificial neurons; Copyright: Institute of Industrial Science, The University of Tokyo

Prosthesis: Artificial pieces of brain communicate with real neurons

20/05/2020

A prosthesis is an artificial device that replaces an injured or missing part of the body. You can easily imagine a stereotypical pirate with a wooden leg or Luke Skywalker's famous robotic hand. Less dramatically, think of old-school prosthetics like glasses and contact lenses that replace the natural lenses in our eyes. Now try to imagine a prosthesis that replaces part of a damaged brain.
Read more
Image: Man with mouthguard and laboratory glasses holding Petri dish up; Copyright: panthermedia.net/kasto

Cardiac Tissue Engineering: a heart out of the Petri dish

23/09/2019

For patients waiting for donor organs, every day can mean the difference between life and death. Making things even more complicated is the fact that not every organ is a compatible match with the patient. It would mean enormous progress if we could grow organs from the patient's own cells in the lab. That's why patients with heart disease place big hope in tissue engineering.
Read more
Image: View over the shoulders of two doctors at a screen showing a model of a heart; Copyright: panthermedia.net/Wavebreakmedia ltd

Regenerative heart valves: from simulation to replacement

23/07/2018

Every year, more than 250,000 patients worldwide receive heart valve implants. Children require repeated replacement surgery because their bodies are still growing, the prosthetic heart valves are not. Regenerative heart valves solve this problem. Until now, we have only been able to monitor how these living implants develop in the body after the fact. Computer models now make this predictable.
Read more
Image: Two hands are holding a tubular frame that is carrying a glistening wet, white tube; Copyright: Leibniz University of Hanover/Institute of Technical Chemistry

Tissue engineering: how to grow a bypass

23/04/2018

A bypass is a complicated structure. It is either made of synthetic materials that can cause blood clots and infections or created by using the patient’s veins. However, the latter often does not yield adequate material. A newly developed bioreactor could solve this problem in the future. It is designed to tissue engineer vascular grafts by using the body’s own material.
Read more
Image:

"Spray-On" muscle fibers for biomimetic surfaces

08/01/2018

Few patients with heart failure are fortunate enough to receive a donor's heart. Ventricular assist devices (or heart pumps) have been around for several years and are designed to buy time as patients wait for a transplant. Unfortunately, the body doesn't always tolerate these devices.
Read more