The collaboration between the Brooks and Georgia Tech teams has created a path to a first-of-its-kind, innovative application for individuals living with disabilities. The teams — comprised of physicians, clinical therapists, and engineers — brought together multidisciplinary expertise in advanced science, technology, and clinical rehabilitation.
"We met with the Georgia Tech team years ago, when we first heard of the research breakthroughs they were achieving for wheelchair users. Brooks is constantly looking for technology that is useful for our patient population living with spinal cord injuries and mobility impairments. To see where the MagTrack project has advanced even just since the early stages of this study is incredible," said Geneva Tonuzi, medical director of the spinal cord injury program, the spinal cord injury and related disorders day treatment program, and Cyberdyne HAL Therapy at Brooks Rehabilitation.
As a result of this engineering-clinical collaboration, MagTrack was created as a cutting-edge assistive technology that enables power wheelchair users to control their connected devices (e.g., smartphone, computer) and drive their power wheelchairs using an alternative, multimodal controller. In addition, the assistive device is designed to be wearable, wireless, and adaptable to the user’s specific condition.
The MagTrack study is earning the praise of patients and scientists alike and has been published in IEEE Transactions on Biomedical Engineering. From the beginning, the MagTrack studies have tested the performance of the Head-Tongue Controller (HTC), an earlier version of the MagTrack technology, on its ability to perform complex human-machine interactions that will enhance users’ quality of life. The MagTrack’s HTC allows the user to perform a variety of complex tasks in a single controller through the use of tongue and head movements, which are detected by eyewear and a tiny tracer that is temporarily glued onto the tongue using Glustitch’s PeryAcryl bio-compatible adhesive. Target-specific commands are generated from these motions using advanced data processing and machine learning models. This combination of input modalities allows the user to perform a variety of daily functions with customizable control, from performing complex computer tasks (e.g., mouse navigation, scrolling, drag-and-drop) to completing advanced driving maneuvers when connected to a power wheelchair.
In the latest study, researchers connected the MagTrack technology to a single power wheelchair donated by Quantum Rehab, and recruited 17 patient volunteers from Brooks Rehabilitation to test the functionality and usability of the device by completing a set of both simple and advanced driving tasks. Results showed that new users of MagTrack can complete these tasks as fast, and sometimes even faster, with the MagTrack’s HTC rather than their personal, alternative controller. Since the study session lasted less than 3 hours — and in a power wheelchair that wasn’t their own — it is anticipated that participants would be more proficient, and thus perform better with MagTrack, if they were given more time to familiarize themselves with its multimodal capabilities and using their own power wheelchair.
MEDICA-tradefair.com; Source: Georgia Institute of Technology