Precise intravenous therapies can significantly improve outcomes for patients suffering from a range of different illnesses. IV infusion is often used in intensive care medicine, cases of severe blood loss, and the treatment of dehydration and severe gastrointestinal symptoms. IV therapy is also used to treat COVID-19 patients. Gravity-feed infusion is the most common form of IV therapy. It works by delivering fluid containing minerals, nutrients and medications from an elevated IV bag to the patient through an infusion system (ECGF-IS). This method can be problematic in developing countries such as Uganda, however, where hospitals routinely use gravity-feed infusion systems in situations where a patient in an industrialized country would be treated using an infusion pump. Infusion pumps allow for much more accurate dosing of the therapeutic agent because they continuously regulate the infusion flow rate. This is not possible with gravity-feed infusion sets, which require the flow rate to be adjusted manually using a roller clamp on the tube below the IV bag. Manual adjustment is a time-consuming process that is often neglected due to insufficient staff. This lack of staff is an issue in Ugandan hospitals, too. In the worst case scenario, incorrect dosing can be fatal for the patient. Children are affected more frequently than adults because they are particularly susceptible to dosing errors.
The researchers working on the "Electronically Controlled Gravity-Feed Infusion Set" project – known as ECGF-IS for short – are aiming to develop a device that regulates dosing automatically and improves the safety of the infusion process. The purpose of the new electronically controlled gravity-feed infusion system is to close the gap between uncontrolled gravity-feed IV infusion and the highly precise but extremely expensive infusion pumps used by physicians in industrialized countries. Infusion pumps are complex to operate and costly to maintain. With spare parts often hard to obtain, they are of limited use for clinical settings in Uganda, which can sometimes be very far from ideal. They are also poorly equipped to deal with varying power outages and cannot be used in areas that have no access to electricity.
"The new system includes a drip sensor that automatically counts the number of drops of IV fluid. The roller clamp normally found in IV sets has been replaced by an actuator that blocks the infusion tube so that the device only administers the number of drops that are actually required to treat the patient," says Tobias Behr, an engineer at Fraunhofer PAMB, describing how the gravity-feed infusion system works. The device also ensures the drip rate remains constant while allowing it to be readjusted where necessary. A major advantage is the fact that hospitals can simply attach the new drip sensor system to their existing IV bags and tubes and continue using them. The physician can adjust all the settings via the display screen. The device is battery-powered and the team of researchers is currently developing a solar-powered charging station for use in rural areas.
MEDICA-tradefair.com; Source: Fraunhofer-Gesellschaft