"Now in the early stages of a second wave, we are much better prepared than before. We are currently assessing how these models can aid clinical practitioners in managing care of their patients in practice."
In the retrospective study using electronic health records from more than 4,000 adult patients admitted to five Mount Sinai Health System hospitals from March to May, researchers and clinicians from the MSCIC analyzed characteristics of COVID-19 patients, including past medical history, comorbidities, vital signs, and laboratory test results at admission, to predict critical events such as intubation and mortality within various clinically relevant time windows that can forecast short and medium-term risks of patients over the hospitalization.
The researchers used the models to predict a critical event or mortality at time windows of 3, 5, 7, and 10 days from admission. At the one-week mark--which performed best overall, correctly flagging the most critical events while returning the fewest false positives--acute kidney injury, fast breathing, high blood sugar, and elevated lactate dehydrogenase (LDH) indicating tissue damage or disease were the strongest drivers in predicting critical illness. Older age, blood level imbalance, and C-reactive protein levels indicating inflammation, were the strongest drivers in predicting mortality.
"We have created high-performing predictive models using machine learning to improve the care of our patients at Mount Sinai," said Girish Nadkarni, MD, Assistant Professor of Medicine (Nephrology) at the Icahn School of Medicine, Clinical Director of the Hasso Plattner Institute for Digital Health at Mount Sinai, and Co-Chair of MSCIC. "More importantly, we have created a method that identifies important health markers that drive likelihood estimates for acute care prognosis and can be used by health institutions across the world to improve care decisions, at both the physician and hospital level, and more effectively manage patients with COVID-19."
MEDICA-tradefair.com; Source: Mount Sinai Hospital/Mount Sinai School of Medicine