Led by Xuanhe Zhao, a professor of mechanical engineering and of civil and environmental engineering, the research team has now developed a way to 3D print neural probes and other electronic devices that are as soft and flexible as rubber.
The devices are made from a type of polymer, or soft plastic, that is electrically conductive. The team transformed this normally liquid-like conducting polymer solution into a substance more like viscous toothpaste - which they could then feed through a conventional 3D printer to make stable, electrically conductive patterns.
The team printed several soft electronic devices, including a small, rubbery electrode, which they implanted in the brain of a mouse. As the mouse moved freely in a controlled environment, the neural probe was able to pick up on the activity from a single neuron. Monitoring this activity can give scientists a higher-resolution picture of the brain's activity and can help in tailoring therapies and long-term brain implants for a variety of neurological disorders.
"We hope by demonstrating this proof of concept, people can use this technology to make different devices, quickly," says Hyunwoo Yuk, a graduate student in Zhao's group at MIT. "They can change the design, run the printing code, and generate a new design in 30 minutes. Hopefully this will streamline the development of neural interfaces, fully made of soft materials."
Yuk and Zhao have published their results in the journal Nature Communications. Their co-authors include Baoyang Lu and Jingkun Xu of the Jiangxi Science and Technology Normal University, along with Shen Lin and Jianhong Luo of Zheijiang University's School of Medicine.
"Polymer solutions are easy to spray on electrical devices like touchscreens," Yuk says. "But the liquid form is mostly for homogenous coatings, and it's difficult to use this for any two-dimensional, high-resolution patterning. In 3D, it's impossible."
Yuk and his colleagues reasoned that if they could develop a printable conducting polymer, they could then use the material to print a host of soft, intricately patterned electronic devices, such as flexible circuits, and single-neuron electrodes.
They made hydrogels with various concentrations of nanofibers and found that a range between 5 to 8 percent by weight of nanofibers produced a toothpaste-like material that was both electrically conductive and suitable for feeding into a 3D printer.
In principle, such soft, hydrogel-based electrodes might even be more sensitive than conventional metal electrodes. That's because most metal electrodes conduct electricity in the form of electrons, whereas neurons in the brain produce electrical signals in the form of ions. Any ionic current produced by the brain needs to be converted into an electrical signal that a metal electrode can register - a conversion that can result in some part of the signal getting lost in translation. What's more, ions can only interact with a metal electrode at its surface, which can limit the concentration of ions that the electrode can detect at any given time.
MEDICA-tradefair.com; Source: Massachusetts Institute of Technology