Researchers from Florida Atlantic University's College of Engineering and Computer Science have developed a rapid and reliable new method to continuously monitor sickle cell disease using a microfluidics-based electrical impedance sensor. Results of the study show that this novel technology can characterize the dynamic cell sickling and unsickling processes in sickle blood without the use of microscopic imaging or biochemical markers.
With this method, Sarah E. Du, Ph.D., senior author and an assistant professor in FAU's Department of Ocean and Mechanical Engineering, and co-authors from FAU's College of Engineering and Computer Science and the University of Miami, were able to characterize the rate of cell sickling and the percentage of sickled cells, which are important contributing factors of abnormal blood flow and sickle cell vaso-occlusion. Vaso-occlusion causes acute pain in patients due to altered forms of hemoglobin.
"The combination of electrical impedance measurement and on-chip hypoxia control provides a promising method for rapid assessment of the dynamic processes of cell sickling and unsickling in patients with sickle cell disease," said Du. "In addition, electrical impedance measurement is naturally quantitative, real-time, and offers a convenience in direct or indirect contact with the samples of interest, allowing integrations to microfluidics platform and optical microscopy."
Findings from the study show that simultaneous microscopic imaging of morphological changes in the cell demonstrated the reliability and repeatability of the electrical impedance-based measurements of cell sickling and unsickling processes.
In the study, the researchers also established the correlations between the in vitro measurements and the patients' hematological parameters, such as the levels of sickle hemoglobin (HbS) and fetal hemoglobin (HbF). These findings show a potential clinical relevance because it serves as a proof-of-concept of electrical impedance as a label-free, biophysical marker of cell sickling events as well as a sensitive tool for probing the dynamic cellular and subcellular processes beyond the optical microscopy. The developed electrical impedance sensor may potentially be used for assessing vaso-occlusion risk, disease severity, and therapeutic treatment in sickle cell disease.
MEDICA-tradefair.com; Source: Florida Atlantic University