Intrigued by these questions, a team of multi-disciplinary scientists from the research groups headed by Matthias Mann at the Max Planck Institute (MPI) of Biochemistry, near Munich and at the Novo Nordisk Foundation Center for Protein research (CPR) at University of Copenhagen have invented an innovative method called 'Deep Visual Proteomics'. The study combines visual features of a tumor with a deep profiling technology to visualize the protein signatures in aberrant cells that are adjacent to the surrounding healthy cells. This would give the researchers an unprecedented insight into the disease and guide oncologists to develop clever strategies for diagnosis and treatment.
Deep Visual Proteomics integrates advances from four different technologies for the first time into a single workflow: First, advanced microscopy generates high-resolution tissue maps. Second, machine learning and artificial intelligence (AI) algorithms are used to accurately classify cells in shape, size, or protein localization before single cells are collected by highly-accurate laser capture microdissection. Then, after sorting normal or different types of diseased cells, the thousands of proteins present in the cell populations are detected all at once by using ultra-high sensitive mass spectrometry (MS) instruments from this minute amount of sample. Lastly, sophisticated bioinformatic analyses generate maps of proteins that provide spatial resolution of protein signatures across highly complex diseases such as cancer. Such protein landscapes are valuable tools for clinicians in understanding of mechanisms in health and disease in a greater detail.
"Our new concept, 'Deep Visual Proteomics', could become a game changer for molecular pathology in the hospitals. With this method, we take a tissue sample with tumor cells, and can identify and determine thousands of proteins in a minute of time and effort. These proteomic signatures reveal the mechanisms that drive tumor development and directly expose new therapeutic targets from a single tissue slice of a cancer patient biopsy. It exposes a cosmos of molecules inside these cancer cells," says Andreas Mund, Associate Professor at CPR and part of Professor Matthias Mann’s team, that spearheaded this development.
MEDICA-tradefair.com; Source: Max Planck Institute of Biochemistry