In multicellular organisms, the cells making up different organs and tissues are not the same. They have distinct functions and properties, acquired in the course of development. They start out the same, as so-called stem cells, which have the potential to become any kind of cell the mature organism incorporates. They then undergo differentiation by producing proteins specific to certain tissues and organs.
The most advanced technique for replicating tissue differentiation in vitro relies on 3D cell aggregates called organoids. The method has already proved effective for studying the development of the retina, the brain, the inner ear, the intestine, the pancreas, and many other tissue types. Since organoid-based differentiation closely mimics natural processes, the resulting tissue is very similar to the one in an actual biological organ.
Some of the stages in cell differentiation toward retina have a stochastic (random) nature, leading to considerable variations in the number of cells with a particular function even between artificial organs in the same batch. The discrepancy is even greater when different cell lines are involved. As a result, it is necessary to have a means of determining which cells have already differentiated at a given point in time. Otherwise, experiments will not be truly replicable, making clinical applications less reliable, too.
To spot differentiated cells, tissue engineers use fluorescent proteins. By inserting the gene responsible for the production of such a protein into the DNA of cells, researchers ensure that it is synthesized and produces a signal once a certain stage in cell development has been reached. While this technique is highly sensitive, specific, and convenient for quantitative assessments, it is not suitable for cells intended for transplantation or hereditary disease modeling.
To address that pitfall, the authors of the recent study in Frontiers in Cellular Neuroscience have proposed an alternative approach based on tissue structure. No reliable and objective criteria for predicting the quality of differentiated cells have been formulated so far. The researchers proposed that the best retinal tissues – those most suitable for transplantation, drug screening, or disease modeling – should be selected using neural networks and artificial intelligence.
"The human retina has a very limited capacity for regeneration," said study co-author Pavel Volchkov, who heads the Genome Engineering Lab at MIPT. "This means that any progressive loss of neurons – for example, in glaucoma – inevitably leads to complete loss of vision. And there is nothing a physician can recommend, short of getting a head start on learning Braille. Our research takes biomedicine a step closer to creating a cellular therapy for retinal diseases that would not only halt the progression but reverse vision loss."
MEDICA-tradefair.com; Source: Moscow Institute of Physics and Technology (MIPT)