Biosensor: detecting patient's antibiotic levels with microneedles
Biosensor: detecting patient's antibiotic levels with microneedles
02.10.2019
Small, non-invasive patches worn on the skin can accurately detect the levels of medication in a patient's system, matching the accuracy of current clinical methods. In a small-scale clinical evaluation, researchers at Imperial College London have shown for the first time how microneedle biosensors can be used to monitor the changing concentration of antibiotics.
Their findings, published today in The Lancet Digital Health, show the sensors enable real-time monitoring of changes in antibiotic concentration in the body, with similar results to those obtained from blood tests.
When further developed, this technology could prove critical for the monitoring and treatment of patients with severe infections. More widely it could be used to monitor many other drugs and personalize treatment in many diseases.
Products and exhibitors around diagnostics and monitoring
Exhibitors and products related to these topics can be found in the catalogue of MEDICA 2019:
The team believes the technology could change how patients with serious infections are treated by showing how quickly their bodies 'use up' medications they are given. The researchers add that if future development and testing proves successful and the technology reaches the clinic, it could help to cut costs for the NHS, reduce drug-resistant infections and improve treatment for patients with life-threatening infections and improve the management of less serious ones.
They add that biosensors could reduce the need for blood sampling and analysis as well as offer more efficient, personalized drug delivery that could potentially be delivered outside of the hospital setting for outpatients.
Dr Timothy Rawson, from Imperial's Department of Infectious Disease and who led the research, said: "Microneedle biosensors hold a great potential for monitoring and treating the sickest of patients. When patients in hospital are treated for severe bacterial infections the only way we have of seeing whether antibiotics we give them are working is to wait and see how they respond, and to take frequent blood samples to analyze levels of the drugs in their system – but this can take time."
"Our biosensors could help to change that. By using a simple patch on the skin of the arm, or potentially at the site of infection, it could tell us how much of a drug is being used by the body and provide us with vital medical information, in real time."
Microneedle biosensors use a series of microscopic 'teeth' to penetrate the skin and detect changes in the fluid between cells. These teeth act as electrodes to detect changes in pH and can be coated with enzymes which react with a drug of choice, altering the local pH of the surrounding tissue if the drug is present.
The technology has been used for continuous monitoring of blood sugar, but the Imperial group has, for the first time, shown its potential for use in monitoring changes to drug concentrations.
Professor Alison Holmes, from Imperial's Department of Infectious Disease and director of the NIHR Health Protection Research Unit in HCAI and AMR at Imperial and the CAMO, said: "Technological solutions such as our microneedle biosensor could prove crucial in improving how we use and protect the arsenal of life-saving antibiotics we have available to treat patients. Ultimately, these types of collaborative, multidisciplinary solutions could lead to earlier detection and better treatment of infections, helping to save more lives and protect these invaluable medicines for generations to come."
MEDICA-tradefair.com; Source: Imperial College London