Main content of this page

Anchor links to the different areas of information in this page:

You are here: MEDICA Portal. MEDICA Magazine. Archive. Cells.

To Pinpoint Body’s Immunity 'Switch'

To Pinpoint Body’s Immunity 'Switch'

Studying a cell protein important in early immune response, the researchers led by Associate Professor Katharina Gaus from UNSW's Centre for Vascular Research at the Lowy Cancer Research Centre, used Australia's only microscope capable of super-resolution fluorescence microscopy to image the protein molecule-by-molecule to reveal the immunity 'switch'. The technology is a major breakthrough for science, Gaus said. Currently there are only half a dozen of the 'super' microscopes in use around the world.

"Previously you could see T-cells under a microscope but you couldn't see what their individual molecules were doing," Gaus said. Using the new microscope the scientists were able to image molecules as small as 10 nanometres.

Gaus said that what the team found overturns the existing understanding of T-cell activation. "Previously it was thought that T-cell signalling was initiated at the cell surface in molecular clusters that formed around the activated receptor. "In fact, what happens is that small membrane-enclosed sacks called vesicles inside the cell travel to the receptor, pick up the signal and then leave again," she said.

The discovery explained how the immune response could occur so quickly. "There is this rolling amplification. The signalling station is like a docking port or an airport with vesicles like planes landing and taking off. The process allows a few receptors to activate a cell and then trigger the entire immune response," she said.

Professor candidate David Williamson, whose research formed the basis of the paper, said the discovery showed what could be achieved with the new generation of super-resolution fluorescence microscopes. "In conventional microscopy, all the target molecules are lit up at once and individual molecules become lost amongst their neighbours – it's like trying to follow a conversation in a crowd where everyone is talking at once.

"With our microscope we can make the target molecules light up one at a time and precisely determine their location while their neighbours remain dark. This 'role call' of all the target molecules means we can then build a 'super resolution' image of the sample," he said. The next step was to pinpoint other key proteins to get a complete picture of T-cell activity and to extend the microscope to capture 3-D images with the same unprecedented resolution.



MEDICA.de; Source: University of New South Wales

 
 
 

More informations and functions