Main content of this page

Anchor links to the different areas of information in this page:

You are here: MEDICA Portal. MEDICA Magazine. Archive. USA.

Link Between Brain Molecule, Obesity and Diabetes

Link Between Brain Molecule, Obesity and Diabetes

Photo: Fat Man

Now, research by postdoctoral fellow Clémence Blouet, and Gary Schwartz, professor in the Dominick P. Purpura Department of Neuroscience and of medicine, has revealed a molecule in the brain that may contribute to those health problems, both of which are reaching epidemic proportions. A 2008 study predicted that 86 percent of U.S. adults will be overweight or obese by 2030 if current trends continue. And last October the U.S. Centers for Disease Control and Prevention estimated that the prevalence of diabetes among American adults could rise from the current 1 in 10 to as many as 1 in 3 by 2050.

In work involving mouse models of obesity and diabetes, Blouet and Schwartz have shown that excess nutrient availability leads to an overabundance of a protein found in nutrient-sensing nerve cells of the hypothalamus. They concluded that increased levels of this protein, known as thioredoxin-interacting protein, or TXNIP, contribute to the onset of obesity and the impaired control of blood sugar levels that characterizes type 2 diabetes.

“Our study indicates that TXNIP in hypothalamic nerve cells provides a crucial link between brain nutrient sensing and the increases in body weight and fat mass that lead to obesity and diabetes,” said Schwartz.

“Hyperglycemia—pathologically elevated glucose levels—causes an excess of TXNIP in hypothalamic neurons, which in turn may contribute in several ways to a breakdown in energy homeostasis—the balance between calories taken in and calories burned. For example, we’ve found that elevated TXNIP in nerve cells contributes to obesity by decreasing energy expenditure, as evidenced by decreased physical activity, and by reducing the rate at which fat is burned to produce energy. In addition to increasing fat mass, hypothalamic TXNIP overabundance also impairs glucose tolerance and insulin sensitivity—two of the hallmarks of diabetes.”

Schwartz notes that these findings regarding TXNIP could eventually lead to therapies. “Interventions that can suppress TXNIP production or selectively inactivate this protein might help in preventing weight gain and the obesity and diabetes that result from it,” he said.



MEDICA.de; Source: Albert Einstein College of Medicine of Yeshiva University

 
 
 

More informations and functions

 
© Messe Düsseldorf printed by www.MEDICA.de