Main content of this page

Anchor links to the different areas of information in this page:

You are here: MEDICA Portal. MEDICA Magazine. Archive. Cancer.

Strategy to Fight Cancer Drug Resistance

Strategy to Fight Cancer Drug Resistance

The researchers discovered, that they could exploit a small portion of this anti-death protein, called MCL-1, to make a molecular tool that specifically blocked MCL-1's "pro-survival" action, allowing standard cancer drugs to kill the tumor cells by apoptosis, or programmed cell death.

"We think this is a very important step toward developing an inhibitor of MCL-1, which is emerging as a critical survival factor in a broad range of human cancers, including leukemia, lymphoma, multiple myeloma, melanoma, and poor-prognosis breast cancer to name just a few," said Loren Walensky, MD, PhD, at Dana-Farber and Children's Hospital Boston.

The scientists showed in lab experiments that combining the MCL-1 inhibitor with a class of conventional agents that can be rendered ineffective by MCL-1 resensitized the cancer cells to the drugs. The MCL-blocking compound is now being advanced to testing in animal models.

MCL-1 belongs to the BCL-2 family, a yin-and-yang collection of proteins that control the process of apoptosis, which is designed to rid the body of unneeded cells during embryonic development or cells that have become damaged or cancerous. The "pro-death" BCL-2 members form a pathway that triggers cellular self-destruction, while "pro-survival" members – of which MCL-1 is one – establish blockades in the death pathway, often by binding to pro-death proteins and disabling them.

Cancer cells exploit the survival pathway by over-expressing anti-apoptotic proteins such as MCL-1, which makes chemotherapy drugs less effective. Developing drugs to specifically target survival proteins like MCL-1 has been challenging, but Walensky has been making progress on that front.

A small, coiled peptide unit called BH3, which is known as the "death domain," is a key interaction point between pro- and anti-apoptotic proteins. Walensky previously showed that an isolated BH3 coiled structure could be reinforced by chemical "staples" and targeted to the BH3-binding domains of BCL-2 survival proteins, causing the cancer cells in which they are overexpressed to self-destruct.

BH3 domains differ in subtle but important ways from one another, like a set of keys for different locks. Walensky said that molecular mimics of these domains are showing great promise in early clinical trials, yet most of these drugs block three or more BCL-2 family proteins, rather than homing in on one specific cancer-causing target. "An ideal pharmacologic toolbox would contain agents that target individual BCL-2 family proteins, subsets, and all members," explained Walensky.


MEDICA.de; Source: Dana-Farber Cancer Institute

 
 
 

More informations and functions

 
© Messe Düsseldorf printed by www.MEDICA.de