Main content of this page

Anchor links to the different areas of information in this page:

You are here: MEDICA Portal. MEDICA Magazine. Archive. Neurology.

Finding the Right Connection

Finding the Right Connection

photo: target cell with regenerating axons

In the last few years, researchers have shown that the severed wires of the spinal cord, called axons, can be induced to regenerate into and beyond sites of experimental spinal cord injury. But a key question has been how these regenerating axons, on reaching the end of an injury site, can be guided to a correct cell target when faced with millions of potential targets. Further, can regenerating axons form functional, electrical connections called synapses?

The UC San Diego scientists showed that regenerating axons can be guided to correct targets using a type of chemical hormone called a growth factor. The team utilized a type of chemical hormone, a nervous system growth factor called neurotrophin-3 (NT-3), to guide regenerating sensory axons to the appropriate target and support synapse formation. Regeneration required two other treatments at the same time: placing a cell bridge in the spinal cord injury site to support axon growth, and a "conditioning" stimulus to the injured neuron that turned on regeneration genes for new growth.

When the growth factor was placed in the correct target as a guidance cue, axons regenerated into it and formed synapses.

Using high-resolution imaging systems, the scientists showed that regenerating axons guided to the correct cell formed synapses that were precisely on target. These axons contained rounded vesicles – small packets at the end of the axon, packed with the chemical messengers needed to support electrical activity in the newly formed circuit.

Nonetheless, the connections were not electrically active. Additional study revealed the likely reason for this: the regenerating axons were not covered in myelin, the insulating material of the nervous system.

"Restoring axonal circuitry is complex, requiring several concurrent therapies to achieve axonal regeneration into and beyond a spinal cord lesion site," said Mark Tuszynski, professor of neurosciences. "But, just as an electrical circuit needs insulation so it doesn't short-circuit, it appears that these regenerating axons require restoration of the myelin sheath to ultimately restore function." This will be the next step in the team's research.

MEDICA.de; Source: University of California, San Diego

 
 
 

More informations and functions

 
© Messe Düsseldorf printed by www.MEDICA.de