Virus Filters for Medical Diagnosis

photo: virus

Microsystems with new mechanisms
could filter viruses in the future;
© PHIL

Providing reliable evidence of viruses in human blood presently requires time- and labor-intensive molecular-biological procedures. Established methods are particularly hard pushed to produce evidence when the viral burden is very low, for example during a phase of therapy. This could soon change.

While developing new types of micro-pumps without movable parts, scientists from the Fraunhofer Institute for Biomedical Engineering IBMT came across an unexpected phenomenon: stable turbulence structures formed in the microscale pump channels. The nano- and microparticles actually intended to verify the pump effect accumulated in large quantities in the channels. The vortex patterns completely filled the whole microchannel, creating a virtually 100% trap for the particles that followed the generated flow profile, although there is a very large cross-section to flow through.

“In order to understand the complex procedures, there was a clear need for a theoretical description. My task was to describe the surprising phenomenon and to make it controllable,” reflects Richard Stein. In his thesis “Mathematical modeling, analysis and numerical simulation of electrothermally driven micropumps”, Richard Stein succeeded in explaining the development of the vortex pattern. To this end, he had to factor in all the relevant processes – of an electrical, thermal and hydrodynamic nature – in a three-dimensional model.

The findings contained in the paper explain the observed effects completely, so that now both effective micropumps and efficient particle filters can be developed and built for many biomedical applications.

MEDICA.de; Source: Fraunhofer Society