Neurology: The Brain with All Its Cells and Their Connections

12/08/2013
Photo: Nerve cells

10 out of 950 neurons reconstructed in a block of mouse retina, imaged using serial block-face electron microscopy. Spheres indicate cell bodies;
© MPG

Understanding the brain and all its connections, that is Connectomics. After analyzing data for four years, aided by about 200 undergraduate students, scientists created now a precise diagram of all nerve cells and their connections in a piece of mouse retina.

Although representing only a small fraction of the brain, this diagram already revealed a new cell type and circuit motifs that may help to understand the reactions of certain retinal cells.

The human brain contains about 100 billion nerve cells, each of which is in contact with thousands of other cells. Scientists have long speculated that the essence of our being, our emotions, thoughts and memories, are all based on those contacts. How can we decode the mysteries hidden in these connections? ”Even a tiny cube of brain tissue contains thousands of cells and many millions of connections“, says Moritz Helmstaedter of the Max Planck Institute of Neurobiology in Martinsried, Germany.

Undeterred by those numbers, the neurobiologists accepted the challenge and now report a first step in this direction. Together with their American collaborators, the Max Planck researchers describe how they mapped all neurons and their connections in a piece of mouse retina.

Even though the cube of retina was only a tenth of a millimetre on a side, it contained around 1000 neurons and more than half a million contacts between them. “We needed about a month to acquire the data and four years to analyse them” says Helmstaedter. The reason for this long time is the extensive analysis needed to extract the wiring from electron-microscope images of brain tissue.

Extremely thin neuronal processes needed to be followed over long distances, without missing any of the multitudes of connections between them. Current computer algorithms are very useful in this process but often not reliable enough. Humans are thus still needed to make the decision whether a neuronal “wire” branches or not. In the current study it took 20,000 hours alone to make those decisions. To analyse an entire mouse brain in this way would require several billion hours of human attention.

The retina does not merely transform images into electrical signals. It separates and filters the image information before transmitting it to the brain. The network of neurons in this small neurocomputer is accordingly complex. While mapping this network the scientists encountered a novel type of cell, belonging to the class of bipolar cells, but with an as yet unknown function. Motifs elsewhere in the connection diagram might explain why some of the retinal cells respond to a stimulus in the way they do. “These results show that we are on the right path, even though we analysed only about one tenth of a percent of the entire mouse retina”, says Helmstaedter.

MEDICA.de; Quelle: Max-Planck-Gesellschaft