Potential to Restore Range of Motion

According to study data a new graft technique may provide the first effective framework around which flexor tendon tissue can reorganize as it heals. Such tissue-engineering approaches could significantly improve repair of anterior cruciate ligaments and rotator cuffs as well, researchers said. The study was in a mouse model designed to resemble hard-to-repair flexor tendons in human hands, and the results should provide an impetus for future clinical trials.

Researchers next experimented with allografts: tendons donated from one person to another. Clinically, this technique fared worse than autografts because patients’ bodies would recognize the donated tendon as foreign, attempt to wall it off with fibrous proteins and in some cases reject the transplant.

The field then looked at whether synthetic scaffolds made of gel or fiber mesh could serve as alternatives. Theoretically, such materials would guide damaged tissue as it reorganizes into healthy tendon without causing an immune reaction. They could be coated with anti-inflammatory drugs, growth factors or gene therapy vectors to drive healing and reduce swelling. Unfortunately, artificial grafts too failed to yield useful tendon substitutes because they did not match the mechanical strength of human tissue.

In the newly published study, a research team from the University of Rochester Medical Center explored yet another option: the implantation of allografts (donated, freeze-dried tendon) loaded with gene therapy. Their results show that the allografts served as effective tissue-engineered scaffolds, with significantly fewer adhesions than seen with autografts. The allografts also sucked up, and delivered into the graft site, a solution of gene therapy vectors that directed the recipient’s cells to accept the graft and remodel it into living tissue.

MEDICA.de; Source: University of Rochester Medical Center