The nanogels — only 200 nanometers in diameter — possess many unique properties that make them ideal drug-delivery tools, according to Daniel Siegwart, a graduate student Carnegie Mellon University.

ATRP, a controlled living radical polymerization process, allows chemists to precisely regulate the composition and architecture of the polymers they are creating. Siegwart and colleagues used ATRP in inverse miniemulsion to make nanogels with a uniform network of cross-linked polymer chains within a spherical nanoparticle.

“A uniform mesh size within the nanogels should improve the controlled release of the encapsulated drugs,” said Siegwart. “The major advance of this system is that ATRP allows one to prepare nanogels that are uniform in diameter. The size of the particles can be tuned, and we are currently investigating how nanogels of different sizes enter cells. The results may allow us to better understand the mechanism of endocytosis and to target specific tissues, such as cancer cells that have a more permeable membrane.”

In their most recent advance, the Carnegie Mellon team incorporated the model carbohydrate drug rhodamine isothiocyanate-labeled dextran into the nanogel’s uniform mesh core. When the nanogels degraded, the model carbohydrate drug was released over time.

The new nanogels, which are nontoxic and biodegradable, can also accommodate molecules on their surfaces. During nanogel synthesis, the ATRP process allows scientists to incorporate “targeting groups” on the nanogel surface that can interact with specific receptors, such as those on the surface of a cancer cell. In addition, the nanogels can escape the notice of the body’s immune system, thus prolonging circulation time within the bloodstream.

“The basic composition of the nanogels is based on an analogue of poly(ethylene oxide), a well-established biocompatible polymer that can enhance blood circulation time and prevent clearance by the reticuloendothelial system, the part of the immune system that engulfs and removes foreign objects from the body,” said Siegwart.

MEDICA.de; Source: Carnegie Mellon University