Photo: Image of human head with puzzles
The new results point the way to fin-
ding more of mutations that contri-
bute to the genetics of schizophrenia;
© Marques

A group led by Doctor Maria Karayiorgou, and Doctor Joseph A. Gogos, examined the genomes of patients with schizophrenia and their families, as well as healthy control groups. All were from the genetically isolated, European-descent Afrikaner population of South Africa.

With advances in technology, three years ago the Columbia team was able to search the entire genome for similar lesions that insert or remove small chunks of DNA. The mutations found accounted for about ten percent of sporadic cases.

Using state-of-the-art "deep sequencing," they examined the nucleotide bases of almost all the genes in the human genome. This time they found 40 mutations, all from different genes and most of them protein-altering. The results point the way to finding more, perhaps even hundreds, of mutations that contribute to the genetics of schizophrenia—a necessary step toward understanding how the disease develops.

"Identification of these damaging de novo mutations has fundamentally transformed our understanding of the genetic basis of schizophrenia," says Doctor Bin Xu, assistant professor of clinical neurobiology at Columbia University Medical Center.

"The fact that the mutations are all from different genes," says Karayiorgou, "is particularly fascinating. It suggests that many more mutations than we suspected may contribute to schizophrenia. This is probably because of the complexity of the neural circuits that are affected by the disease; many genes are needed for their development and function." Karayiorgou and her team will now search for recurring mutations, which may provide definitive evidence that any specific mutation contributes to schizophrenia.

The potentially large number of mutations makes a gene-therapy approach to treating schizophrenia unlikely. Researchers suspect, however, that all of the mutations affect the same neural circuitry mechanisms.

The study's results also help to explain two puzzles: the persistence of schizophrenia, despite the fact that those with the disease do not tend to pass down their mutations through children; and the high global incidence of the disease, despite large environmental variations.; Source: Columbia University Medical Center