Posted as an early online publication of the peer-reviewed journal Neurobiology of Aging, this largest-ever study of brain iron demonstrates gender difference in brain iron levels for the first time. Until now, researchers had considered the brain blood barrier as protection against accumulating too much iron from the body. The finding suggests instead that age-related brain iron accumulation is a modifiable risk factor for degenerative brain diseases.

In addition, the study finds a nearly perfect correlation between iron levels in various brain regions of study participants measured using MRI and those reported by past post-mortem studies. The finding demonstrates the ability of MRI analysis to accurately measure iron levels in brain tissues of living patients.

Previous studies have shown that high accumulation of iron in brain tissue causes oxidative damage and formation of plaques found in age-related neurodegenerative disorders such as Alzheimer disease. In addition, past population studies show men develop such diseases about five years earlier than women but brain iron levels increase with age in both genders.

"If you can measure it and learn how to modify it, then you can fix it," said Dr. George Bartzokis, lead author and professor of neurology at the David Geffen School of Medicine at UCLA. "Alzheimer disease rates double every five years after age 60, so a modifiable risk factor assessed by non-invasive means may represent potential interventions that could halve the number of cases of AD in the United States."; Source: University of California - Los Angeles