Using a corrective gene, scientists were able to block a protein in the kidneys that triggers high blood pressure and kidney damage, said Zhongjie Sun, M.D., Ph.D., a UF assistant professor of medicine, physiology and functional genomics and the lead author of the study.

The protein, called a mineralocorticoid receptor, signals the body to absorb sodium and water into the bloodstream. This increases the amount of blood in the body, also increasing blood pressure. While some treatments already on the market block the MR protein, the medications don't target it specifically, interfering with other receptors and causing unwanted side effects, Sun said.

"This new technique can specifically and efficiently inhibit the protein and prevent the progression of hypertension," Sun said. To block the protein, researchers used a technique called RNA interference. A harmless virus ferries fragments of RNA into the body, where they infiltrate cells and stop the protein. It's the first time scientists have used the approach to treat hypertension and kidney damage, he said.

The treatment kept blood pressure from escalating but did not lower it to normal levels, most likely because the researchers monitored the rats only for three weeks after they were treated.

While researchers expected the treatment to prevent hypertension, they were surprised to discover that it dramatically reduced damage to the kidneys as well. It was already known that hypertension can lead to kidney dysfunction, particularly in the later stages of the disease, but these findings show that the MR protein may play more of a role in causing kidney damage than researchers previously understood.

"Increased expression of this protein may cause kidney damage, which has nothing to do with pressure-induced kidney damage," Sun said.; Source: University of Florida