To test the biosensor, the researchers assessed its ability to detect two avian influenza strains that previously infected poultry. The results showed that a solution containing very few virus particles could be detected by the sensor. The device is coated with antibodies specifically designed to capture a protein located on the surface of the viral particle. For this study, the researchers evaluated the sensitivity of three unique antibodies to detect avian influenza virus.

The sensor utilizes the interference of light waves, a concept called interferometry, to precisely determine how many virus particles attach to the sensor’s surface. More specifically, light from a laser diode is coupled into an optical waveguide through a grating and travels under one sensing channel and one reference channel.

Researchers coat the sensing channel with the specific antibodies and coat the reference channel with non-specific antibodies. Having the reference channel minimizes the impact of non-specific interactions, as well as changes in temperature, pH and mechanical motion. Non-specific binding should occur equally to both the test and reference channels and thus not affect the test results.

An electromagnetic field associated with the light beams extends above the waveguides and is very sensitive to the changes caused by antibody-antigen interactions on the waveguide surface. When a liquid sample passes over the waveguides, any binding that occurs on the top of a waveguide because of viral particle attachment causes water molecules to be displaced. This causes a change in the velocity of the light travelling through the waveguide.

At the end of the waveguide, the light beams from the sensing and reference channels are combined to create an interference pattern. The pattern of alternating dark and light vertical stripes, or fringes, is imaged on a simple detector. By doing a mathematical Fourier transform, the researchers determine the degree to which the fringe patterns are in or out of step with each other, known as phase shift. This phase shift tells the amount of virus bound to the surface.

MEDICA.de; Source: Georgia Institute of Technology Research News