When the liquid is applied to open wounds, the peptides self-assemble into a nanoscale protective barrier gel that seals the wound and halts bleeding. Once the injury heals, the nontoxic gel is broken down into molecules that cells can use as building blocks for tissue repair.

"We have found a way to stop bleeding, in less than 15 seconds, that could revolutionize bleeding control," said Rutledge Ellis-Behnke, research scientist in the Massachusetts Institute of Technology (MIT) Department of Brain and Cognitive Sciences.

Doctors currently have few effective methods to stop bleeding without causing other damage. More than 57 million Americans undergo nonelective surgery each year, and as much as 50 percent of surgical time is spent working to control bleeding. Current tools used to stop bleeding include clamps, pressure, cauterization, vasoconstriction and sponges.

In their experiments on hamsters and rats, the researchers applied the clear liquid containing short peptides to open wounds in several different types of tissue - brain, liver, skin, spinal cord and intestine.

"In almost every one of the cases, we were able to immediately stop the bleeding," said Ellis-Behnke, the lead author of the study. "The time to perform an operation could potentially be reduced by up to 50 percent," he said.

When the solution containing the peptides is applied to bleeding wounds, the peptides self-assemble into a gel that essentially seals over the wound, without harming the nearby cells. Even after excess gel is removed, the wound remains sealed. The gel eventually breaks down into amino acids, the building blocks for proteins, which can be used by surrounding cells.

Unlike some methods now used for hemostasis, the new materials can be used in a wet environment. And unlike some other agents, it does not induce an immune response in the animals being treated.

MEDICA.de; Source: Massachusetts Institute of Technology