David Thorley-Lawson, PhD, professor of pathology at Tufts University School of Medicine, is combining Pathogen Simulation (PathSim), laboratory methods, and clinical studies to provide a new and powerful approach to understanding Epstein-Barr virus (EBV) and ultimately designing anti-viral therapies.

“PathSim is an agent-based computer program. The agents are the virus itself, and the T and B cells of the patient’s immune system,” explains Thorley-Lawson. Using PathSim, Thorley-Lawson can manipulate these agents to simulate EBV infection and persistence in humans. “EBV can infect one person and remain latent – not cause any symptoms. It can infect another person and cause infectious mononucleosis, or, in rare cases, cancer, like Hodgkin’s, Burkitt’s, and immunoblastic lymphomas,” he says.

“Scientists can use PathSim like a video game and change variables, such as number of virus particles or characteristics of the patient’s immune cells, to follow the course of disease and observe what drives the virus to either latency or illness. We validated PathSim by comparing it to EBV infection in patients,” says Thorley-Lawson. “For example, PathSim projected that the peak in the number of infected immune cells, called B cells, would occur 33 through 38 days post-infection, which is consistent with the peak of 35 through 50 days actually seen in infected patients. This consistency is important because it validates the predictive power of PathSim; the power to reveal what EBV is doing in a patient’s body”.

“It takes one full week to run one simulation,” says Thorley-Lawson. “Then we compile the data and look for critical switch points of disease. Once these critical switch points are understood, biologists may be able to develop drugs that target specific points in the interaction between the virus and immune system at specific times,” explains Thorley-Lawson.

MEDICA.de; Source: Tufts University